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Abstract-Steady-state rolling of aluminum slabs has been studied with a forming model that
assumes rate-dependent plastic flow of the aluminum. Hardening behavior is represented with
an internal variable constitutive equation in which parameters are evaluated from independent
mechanical property data. Rolling conditions over a broad range of reductions and temperatures
were simulated. Computed differences in the resulting property (state) changes and temperature
rises arc reported. The computed hardness for the lowest temperature simulations are compared to
measured yield strengths for rolled aluminum.
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constitutive model parameter
constitutive model parameter
specific heat
rate of deformation (stretching)
ellcctive rate of oefornwtion, (2/3 Tr (d' d» 1/2

matrix of effective viscosities
intern;lI energy per unit mass
constitutive model parameter
force matrix
gravitational vector
clastic shear modulus
incompressibility constraint matrix
convection coefficient (film coefficient)
trace operator
heat transfer coefficient matrix
virtual rate of work
thermal conductivity
shear stiffness matrix
constitutive model parameters
constitutive model parameter
shape function matrices
shape function spatial gradient matrices
Lagrange multiplier (negative of the mean stress)
nodal point values of p
heat flux
imposed heat flux on Sq
thermal activation energies in the constitutive model
volumetric heat generation rate
thermal source and surface heat flux matrix
surface
portion of thc surface having imposed internal variable
portion of thc surface having imposed internal heat nux
portion of the surface having imposed velocity
portion of the surface having imposed traction
portion of the surface having imposed temperature
time
surface tractions
imposed surface tractions on S.
velocity
imposed velocity on S.
tool velocity tangent to the surface
component of velocity tangent to the streamline
component of surface velocity tangent to the surface
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{U} nodal point values olu
V volume
W weighted residual for the heat transler solulion
x spatial coordinatcs
x, coordinate along a streamline.

Greek symbols

Superscripts,

p
v

Subscript
e

I"ri<.:tioll codliciclli
surface normal
temperature
imposed temperature on S"
reference temperature
melt temperature
ambient temperature
initial temperature
internal variable
imposed value of J' on S,
constitutive model parameter
effective viscosity
mass density
Cauchy stress
hardness (internal variable, J') in Hart's model
effective stress, (3/2 Tr (0" 0')) 1/2

yield stress.

deviatorie quantities
plastic elements in Hart's model
viscous elements in Hart's model.

elemental quantities.

I. INTRODUCTION

In the early stages of reducing an aluminum bloom to product forms such as plates, sheets
or foil, rolling is performed at elevated temperatures. Elevated temperatures reduce the
flow stress necessary to deform the workpiece and increase its ductility, thereby making
larger reductions on a given pass possible. At high temperatures the rate dependencies
associated with plastic flow are important and thus the material is often modeled as
viscoplastic. Further, in the brief time required to compress a slab between the rolls, the
flow stress may increase significantly because of strain hardening. In the hot working regime,
there is usually sufficient time between passes for recrystallization and recovery processes
to reduce the flow stress. The material hardens during each pass and then recovers to a
lower flow stress in the time between passes. In the warm working regime, however,
the temperatures are usually too low for recovery mechanisms to significantly affect the
accumulation of crystal defects that produce higher strength of the workpiece. In either
case the workpiece experiences an increase in flow stress during forming as a result of strain
hardening. This change in the flow stress is not uniform through the slab since the plastic
deformations that produce strain hardening vary through the thickness.

The focus of this paper is the modeling of warm or hot rolling of aluminum with an
internal (state) variable constitutive model that assumes isotropic strain hardening. The
model parameters have been evaluated from independent laboratory data for aluminum
over the regime of temperature, strain, and strain rate that is characteristic of warm and
hot rolling. A number of rolling simulations were performed that span a wide range of
rolling reductions, temperatures, and frictional conditions. Of particular interest from the
results of these simulations are the computed differences in the internal (state) variable of
the constitutive model. The state variable represents the material "hardness" and is a measure
of the internal dislocation structure of the material. The computed values of the hardness
are compared to measured yield strengths of rolled aluminum.

The remaining portion of this section of the paper is devoted to a brief review of related
modeling efforts. Subsequent sections review the governing equations, describe the
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constitutive model and the evaluation of the parameters needed in the model, summarize
the approach taken to solve the equations numerically, and discuss in detail the rolling
simulations.

A complete analysis of a solid undergoing large strain deformations during forming
processes would necessarily include both elastic and inelastic deformations. Numerical
formulations that incorporate clastoplastic material behavior and geometric nonlincarities
were first developed in the early 1970s by Hibbit et al. (1970) and Needleman (1972) as
extensions of existing small strain clastic-plastic formulations. Formulations that have
evolved from these early clrorls have been used 10 analyze melal forming processes, including
rolling in both two and three dimensions (Kiefer and Hilton, 1985; Kiefer, 1984) in which
the plastic deformations may occur both from rate-independent plastic and rate-dependent
viscous straining. Other approaches also have been developed such as the formulations
based on Lagrangian convected coordinates (Needleman, 1982; Needleman and Tvergaard,
1983; Pierce et al. J 983) for both rate-independent and rate-dependent plasticity models
and an Eulerian representation in which the reference state is updated with each increment
of the deformation so that at the beginning of each increment the current and reference
configurations coincide (McMeeking and Rice, 1975). The former approach has been
applied to a variety of strain localization problems, as discussed in the cited references. The
latter approach has been used by several other investigators to model forming processes,
such as extrusion, with rate-independent models (Lee et al., 1977a,b) and rate-dependent
models (Chandra and Mukherjee, 1984). Dynamic formulations have also been employed
to simulate forming operations with elastoplastic material models, such as the analyses by
Key et al. (1979) and Flower and Hallquist (1986) on rolling, extrusion and forging
processes.

In many forming applications the plastic strains are sufficiently large that it is not
necessary to consider the combined elastic and inelastic behavior for analyzing many aspects
of the deformation process. Rather, the elastic strains can be neglected and the strains then
are taken to be completely inelastic. Kobayashi and co-workers lead this approach, mode­
ling the material as rigid-plastic or rigid-viscoplastic (an extensive summary of these efforts
is given by Kobayashi (1985». Rigid-plastic analyses of rolling have been performed by Li
and Kobayashi (1981, 1984), Mori et al. (1982), and Estivalet et al. (1982). In these analyses,
the flow stress increases with the deformation as a function of the accumulated strains.
Coupling of the solutions for the flow field and the temperature distribution have been
reported by Dawson and Thompson (1977), Zienkiewicz et al. (1981), Rebelo and Kobay­
ashi (1980a,b), and Dawson (1980) for extrusion, rolling, forging and welding processes.
Argyris et al. (1980) have reported on a detailed comparison of the results predicted using
elastoplastic and viscoplastic formulations for extrusion and cold-heading processes.

The above-mentioned articles using viscoplastic approximations have assumed either
strain hardening behavior for the flow stress at low temperatures or purely viscoplastic
behavior at high temperatures. Using a viscoplastic model with a hyperbolic dependence
between stress and the rate of deformation, Dawson (1984) showed that in warm and hot
rolling processes, the material would be expected to be deformed in a regime of stress and
temperature where strain hardening is important, but in which the material would not be
well characterized as rate independent. Further, Eggert and Dawson (1986) compared
detailed experimental records of the temperature and deformation during upset (solid-state)
welding of stainless steel rods to the corresponding histories computed with a purely
viscoplastic representation. While the model was reasonably accurate without strain hard­
ening (since the process was compressive and the model was based on peak flow stress data)
several features of the comparison suggest that strain hardening plays an important role in
the deformation history of the rods. Internal variable plasticity models (as are discussed in
more detail later) have been utilized to characterize this more complicated material response
by Dewhurst and Dawson (1984) and by Chandra and Mukherjee (1984). This paper
provides a detailed examination of the use of an internal variable constitutive model to
simulate flat rolling. In addition, it will be shown that this modeling approach can be used
to predict the manner in which the material properties, as manifested by the internal
variable, change with rolling conditions.

SAS 23: 7-1
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2. EQUAnONS GOVERNING THE FORMING PROCESS

The motion and temperature of the workpiece are governed by balance laws for mass,
momentum, and energy. Written in a Eulerian reference frame these relationships are:

conservation of mass

balance of linear momentum

conservation of energy

Dp d'
DI + P IV U = 0

div O'+pg = 0

De .
p Dt + div q- Q = O.

(I)

(2)

(3)

A number of assumptions have been made in writing eqns (1 )-(3) as they appear above.
There is no mass production in eqn (I); inertia has been neglected and there is no momentum
production in eqn (2); and in eqn (3) the heat generation includes a contribution from
viscous dissipation. The stress 0' is the Cauchy stress and is symmetric.

Constitutive equations are required to characterize the material behavior math­
ematically. For the model described herein, the internal energy, heat flux, and stress are
written as functions of the rate of deformation, temperature, and state of the material as
described by a collection of internal variables:

e = e(d, e, grad e, K)

q = q(d, 8, grad 8, K)

0' = O'(d, 0, grad 0, II:).

(4)

(5)

(6)

Simple linearized forms ofeqns (4) and (5) are assumed to represent the material adequately

and

q = -k grad e.

(7)

(8)

In these forms, the specific heat and conductivity often are specified as functions of tem­
perature, however.

The mechanical behavior is nonlinear and considerably more complex. The constitutive
equations for the stress are required to describe the rate-dependent plastic flow of the metal
workpiece. Ofparticular interest is the hardening and recovery behavior exhibited by metals
over the regime of stress, strain, and temperature observed in primary forming processes
such as rolling. The plastic deformations are assumed to be incompressible, leaving the
density constant and reducing the conservation of mass equation to

Tr d = O. (9)

The constitutive equations for the shear stress behavior accommodate the rate dependency,
strain hardening, and temperature sensitivity through a set of equations equivalent to eqn
(6) plus any evolution relationships that are necessary. Numerous forms have been published
in the literature, as will be mentioned in the following section.

Boundary conditions are necessary to complete the mathematical formulation describ­
ing the motion and heating of the workpiece. For the motion, known tractions or velocities
are imposed on the surface
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(1''1=t
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(10)

u=u on Suo (11)

In the case of sliding friction over a portion of the boundary, the tangential component of
the traction is defined in terms of the relative velocity between the workpiece and the tool

(12)

Boundary conditions for the temperature include known heat fluxes or temperatures on the
surface:

and

k grad (}, '1 = q

on S8'

(13)

(14)

Convective losses on the surface are assumed to be proportional to the difference between
the surface temperature and an ambient temperature

(15)

Finally, boundary conditions must be specified for the internal variables. Everywhere that
material enters the Eulerian region known values of the internal variables are imposed

K=K (16)

(Note that it is mathematically acceptable to impose K for a material particle at any point
along its streamline through the region. We assume that K is known as the material enters
the region and subsequently evolves with the deformations.)

3. CONSTITUTIVE MODEL FOR PLASTIC DEFORMATIONS OF THE WORKPIECE

The plastic behavior of polycrystalline metals is very complicated. The flow stress
depends on the temperature, rate ofdeformation, and in some way on the past deformations.
The change in flow stress that accompanies a change in strain is the difference between the
hardening, which results from the accumulation of crystal defects, and softening, which
may be a consequence of recrystallization or of rearrangement into stable sub-structures
having lower flow stresses (recovery). Hardening essentially occurs concurrently with defor­
mation, while the softening may require much longer times and is strongly dependent on
the material's temperature and deformation history. From a modeling viewpoint, it is
important to include hardening in the material description because in applications such as
rolling the deformations occur in much shorter times than are needed to reduce the flow
stress by recrystallization or recovery (Hatch, 1984). Evidence of the increase in flow stress
with strain at hot or warm working temperatures is documented in a variety of papers,
including data for aluminum (Hockett, 1976; Sheppard and Wright, 1979) and steel (Cook,
1957; McQueen et al., 1975). The data reported by Cook for steel and Hockett for aluminum
particularly illustrate such behavior as it relates to hot or warm working. Over the span of
temperatures and rates of deformation commonly used in hot working, these materials are
observed to strain harden significantly for strains up to approximately 1.0. Although the
assumption often is made that the flow stress will saturate at larger strains (and thus strain
hardening can be neglected once the material has experienced the first few passes in rolling),
Hecker and Stout (1984) reported continued hardening at low temperatures to strains
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approaching 7.0, with no apparent trend toward saturation of the flow stress. At high
temperatures where recovery or recrystallization is important, the time between passes is
sufficient to allow the flow stress to recover a value lower than the saturation stress. In that
case each pass begins with a material that exhibits hardening when deformed.

The complexity of the material behavior has important implications for the modeling
of bulk forming processes. The assumed constitutive behavior for the plastic flow must be
accurate in the regime of temperature, strain rate, and stress that exists in the material as
it is processed. In an earlier article (Dawson, 1984), the stress and temperature histories
that material particles experience during forming were compared to observed modes of
deformation by plotting the stress/temperature trajectories of material particles on a defor­
mation mechanism map. Such maps delineate the dominant modes of deformation as func­
tions of stress and temperature. Although the maps in no way specify the functional forms
for the various mechanisms, they do provide an effective means of assessing whether or not
a constitutive relationship has been used within the range of conditions that motivated and
supported its development. This was done for the case of the slab rolling of an aluminum
plate using a viscoplastic model to represent the behavior of the aluminum, as suggested
by Sheppard and Wright (1979). The response of the aluminum as it traveled through the
process was superimposed on an appropriate deformation mechanism map for several
particle paths. While the particles remained well removed from the rate-independent regime
(low temperatures and high stresses), it was clear that the conditions were not restricted to
such high temperatures that hardening could always be neglected. Thus, constitutive equa­
tions that embody hardening, and possibly recovery, are necessary to accurately characterize
the material in this and other similar forming processes.

A wide variety of constitutive models has been developed in the past to characterize
the plastic flow of polycrystalline metals. This article focuses on plastic behavior that is
inherently rate-sensitive since the principal interests are in hot or warm working processes.
Simple extension of rate-dependent (viscoplastic) models have been suggested which, for
instance, have proposed multiplicative strain and strain-rate functions. Such models are
not sufficiently general (because plastic strain is not a true state variable). As alternatives
to such models, several internal (state) variable, viscoplastic models have been proposed
(see Swearengen et al. (1985) for a general review). These models are continuum rep­
resentations and are phenomenological in their basic foundations. Their structure permits
changing load paths, strain rates, and temperatures in a theoretically consistent manner.

A variety of models fall into this category. The models proposed by Bodner and Partom
(1975), Kocks (1976), Hart (1976), Miller (1976), Krieg et al. (1978), Anand (1982),
Bammann (1984) and Lowe and Miller (1984) are among the better known ones. While the
more general models incorporate at least two internal variables (typically one scalar and
one tensor), the results reported here are for a version of a general model which has been
simplified to include only a scalar internal variable. The constitutive equations for the shear
deformations (eqn (6)) are structured then as

flow law (Levy-Mises)

yield criterion

and

evolution equation

(17)

(18)

(19)

An "effective" viscosity is defined from eqns (17) and (18) as
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(20)
0'11

Ile = 3d;, .

The "effective" viscosity obviously is variable, and depends on the rate of deformation,
temperature, and material state.

A number of assumptions have been made in representing the metal behavior with
equations of this form. First, the metal is being treated as isotropic. In the rolling applications
studied here, the plastic strains are much larger than the elastic strains and a back-extrapolated
definition of the yield stress is valid. For many metals, the yield surface based on a back­
extrapolated definition is approximated well by a von Mises surface provided sufficient
straining has occurred. Under modest changes in loading direction large errors could result
in the straining direction from an isotropic assumption. This is not considered here since
the plastic strains in the rolling applications presented do not reach the large values where
this is known to be important.

A second simplifying assumption is that the material does not reach such an advanced
state of deformation during the forming operation that any ductility limit is exceeded. For
general predictive capability, however, appropriate criteria for the transition to modes of
deformation associated with failure should be checked during a simulation to ensure that
the material remains within bounds for the assumed ductile mode of deformation. Another
assumption that has been made in these simulations is to neglect elasticity. This is not a
restriction imposed by the constitutive models, which do allow elastic strains to be added
to the plastic strains to obtain the complete response. Rather, this assumption is made on
the basis that the plastic strains in the forming operations studied are very much larger
than the elastic strains and the loads are not reversing. As a consequence, residual stresses
are not computed.

The underlying premise of internal variable models is that the response of a material
to an applied load may be determined uniquely from the material's current state. The
collection of internal variables completely defines the material properties and eliminates the
need to remember the temperature and deformation history that brought the material to
its present condition. All histories that produce the same changes in the internal variables
from identical starting configurations are equivalent from the perspective of the material
behavior. We have concentrated on a model that uses a single scalar variable to describe
the state of the material. This implies that there is one microstructural feature that controls
the rate of deformation for a particular combination of stress and temperature. Models
with one internal variable are capable of following one transient in the material response
associated with the evolution of the dominant microstructural feature. Other transients
(associated with other microstructural features) that may occur must decay quickly in
relation to the dominant transient for the single variable model to represent the material
well. The usefulness of a single-variable model therefore is dependent on the existence of a
dominant transient over the total span of the forming deformation being simulated. In the
model used here the observed transient that the model represents is the entire stress-strain
curve. Short transients that occur near the initial point of plastic yielding (such as a yield
drop or Bauschinger effect) are not included.

The constitutive model proposed by Hart (1976) has been used to represent aluminum
in the rolling applications presented later. Hart examined the observed laboratory behavior
of aluminum alloys, stainless steels, and other metals in constructing the model. Tests on
1100 aluminum were performed at approximately 0.30m (Hart and Solomon, 1973).

A mechanical analogy of the model has two parallel legs; one leg having a frictional
(non-hardening viscoplastic) element and the other having a series combination of an
anelastic spring and a rate-dependent plastic (hardening viscoplastic) element. The frictional
element represents the resistance to dislocation glide from the frictional force acting on slip
planes

where

(
d'V)IIM

IV G 11
0'11 = e-

a
(21)
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(22)

The stress in this clement generally is small in comparison to the stress in the plastic clement.
except at either high strain rates or low temperatures. The plastic element represents the
plastic flow resistance controlled by dislocation motion past strong barriers

where

* (O'*'i (- QO)d = 10 G.) exp Re .

(23)

(24)

The plastic flow resistance increases with straining due to an increase in the barrier strength
with the density of dislocations. The scalar internal variable quantifies this barrier strength
in a continuum sense and is referred to as the hardness. The exact analytic form for this
element was deduced by Hart from the scaling of stress relaxation tests for differing
hardness. The form implies that the stress in the plastic element is not a monotonic function
of the hardness, but rather has a maximum value at finite (non-zero) hardness. As is
observed for metals deforming by slip, the strain-rate sensitivity of the flow stress of the
plastic element is small at low temperatures and increases as the temperature increases. The
anelastic element is responsible for the apparent anisotropy predicted by the model. The
tensor strain in this element is the second internal variable and is partially recovered on
unloading since it is in parallel with the (viscoplastic) frictional element. The anelastic strain
is proportional to the stress acting on the leg that contains it through a modulus of the
same order of magnitude as the elastic shear modulus. We have chosen to neglect this
element since it describes relatively short transients (in monotonic straining) in comparison
to the overall hardening observed in stress-strain curves for large strains. The evolution of
the hardness is described by an equation that predicts a diminishing hardening rate for
increasing hardness or decreasing (plastic element) stress

D ( *) *d,p(Gc'f' (att'f
Dt a = CoO' II 0'*) a*t (25)

The hardening rate is never zero, however, if the plastic element is deforming, so that a
saturation value of the hardness does not exist although the rate of hardening constantly
decreases with continued straining. The form of the evolution equation for hardness pro­
posed by Hart gives low hardening rates at high temperatures or low strain rates. At low
temperatures incremental changes in the hardness resulting from increments in plastic strain
are nearly independent of the strain rate. As given in eqn (25), the evolution of the hardness
does not include static recovery effects. At high temperatures recovery may produce sig­
nificant changes in the hardness given adequate time, as discussed earlier. In Hart's model
the flow stress is a weak function of the hardness at high temperature, so modest changes
in the hardness due to static recovery have little impact on the flow stress.

Because the plastic and frictional elements act in parallel, the following compatibility
equations apply:

(26)

(27)
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Fig. I (a). Flow stress data for 1100 aluminum showing measured and computed responses.

These equations define the observable stress and rate of deformation in terms of the
quantities acting on each leg of the mechanical analog. Equations (21)-(27) are a specific
case of eqns (18) and (19).

Prior to conducting the rolling simulations, it was necessary to define values for all of
the parameters in the constitutive model. Several of the values are considered well known
for aluminum, namely A, Gc, M and m, from relaxation data (Hart and Solomon, 1973).
The values for Qo and Qo were taken to be equal to the value for the activation energy
reported by Sheppard and Wright (1979). The other parameter values were not known,
particularly in the range of stress and temperature typical of hot or warm rolling. For this
reason, the unknown material parameters were evaluated from data reported by Hockett
(1976) for 1100 aluminum. The data in this article were used because the test conditions
included a range of deformation rates from 10- I to 102

S- I, homologous temperatures of
0.3-0.8, and logarithmic strains of up to 0.7. The data were obtained from cam plastometer
tests that provided constant deformation rates in axial compression. The constitutive
equations for the stress and the internal variable under deformations corresponding to the
imposed experimental conditions were integrated numerically using various combinations
of the unknown material parameters (n, mo, co,/o, ao, (1~ until reasonable fits to the data
were obtained. Figure I(a) shows the results of fitting the simplified version of Hart's model
to data reported by Hockett. Greatest weight was given to matching the curves for the
intermediate temperature of 473 K. The strain rates of 11.8 and 113 s- I were taken to be
closest to rates typical in rolling. In this regime, the fits are quite good. However, at either
higher or lower temperatures the hardening behavior predicted does not match the test data
as well, even though the overall magnitudes of the stresses are reasonable. The increase in
the hardness (internal variable in Hart's model) for each of the tests is shown in Fig. I(b).
At the lowest temperature, the hardening is nearly independent of deformation rate. The
effect of deformation rate, however, is clearly present for the higher temperature tests. The
parameters for Hart's model that were used in the simulations are given in Table I. Fits of
comparable or better quality using other values of the constants n, m', Co, 1o, ao, and (1~ are
possible. Further, by also allowing the remaining parameters ()., M, m, Qo, and Qo) to
vary in fitting the models to Hockett's data considerable flexibility exists. However,
establishing values for these parameters from relaxation data as was done here broadens
the data base and gives more confidence in the accuracy of the parameters.
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4. NUMERICAL SOLUTION OF THE MODEL EQUAnONS

The system of equations set forth in the preceding sections are solved approximately
using numerical techniques. Finite element formulations provide solutions for the steady­
state velocity and temperature fields while predictor-eorrector methods are employed to
integrate the evolution equations for the internal variable along streamlines of the flow. As
is evident from the preceding discussion, the equations for the motion, temperature and
material state are closely coupled. Simultaneous solutions for the coupled sets of equations
are obtained by iteratively solving each set separately using the most recent approx.imations
of motion, temperature and material state until the solutions converge.

4.1. Solving for the motion
The velocity field is determined from a variational statement representing the virtual

rate of work (Thompson et al., 1969) that has appended the constraint condition of
incompressible deformations. The corresponding Euler equations are eqns (2) and (9) and
the boundary conditions of eqns (10) and (It). This variational statement can be written as

6J = [ Tr (n" od') dV- rpg'6u dV- r T'ou dS-b f p Tr d dV. (28)Jv Jv Js. Jy

By introducing approximating functions for the velocity and the negative of the mean stress
(Lagrange multiplier, p) over a finite element as

{u(x)} ::; fN(x)J{ U} (29)

(30)

and eliminating the stress using the flow law (eqn (17», the variational statement for a
single element becomes
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Table 1. Simplified Hart model parameters

957

Parameter

In (00)

In (co)
In (fo)

M
m
m'
n
G,

Qo/R
Q'o/R

).

at

Units

GPa
K
K

MPa

Value

120
-18.6

53
7.8
5.0
3.5
6.0

18.9t
1.89 x 10't
1.89 x 10't

0.15
64

t Note: The values ofG, are lower than standard hand­
book values while Qo/R and Q'o/R are higher. Other
parameters compensate for these variations in the overall
fits. This in part is responsible for the high values of 00

and 10' It is recommended that the model parameters be
evaluated based on more widely accepted values of shear
modulus and the activation energy for further cal­
culations.

oj. = {OU}{[K].{ U}. - {oU}{[Gf {Pl. - {OP}[[G].{ U}. - {oU}[{F}. (31)

[K]. = Iv. [N'f[D] [N'] dV (32)

{F}. = Iv. [Nf{pg} dV+ L,[NY{T} dS. (34)

Here, matrix notation has been introduced for convenience, and the spatial derivatives
of the approximating functions, [N' ], are defined to give

{d} = [N']{U}c

Tr d = {hr{d} = {hr[N']{U}•.

(35)

(36)

Matrix [D] is a diagonal matrix consisting of effective viscosities as defined by eqn (20).
Following standard practices of the finite element method, a matrix equation is obtained
for the nodal point velocities and pressures

(37)

Because the effective viscosities depend on the velocity field, this equation is nonlinear and
is solved using a combination of Newton-Raphson and Picard's methods. For frictional
sliding on the surface as represented by the model of eqn (12), the force matrix depends on
the unknown velocity. In this case the portion of the force term containing the unknown
velocities is appended to the stiffness matrix [K]c while the known quantity from the tool
velocity remains in the force matrix (Dawson, 1984).
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4.2. Solving for the temperatures
The temperalure dislribulion is evaluated from a weigh led residual formed from the

energy equation and an appropriate set of weighting functions. The energy equation is first
written in terms of the temperature by introducing eqns (7) and (8) and simplified to steady­
slale condilions. The weigh led residuallhen can be writlen as

w= ~ f[diV(k grad O)-pcpu'grad O+Q]N, dV. (38)

Choosing the weighting functions to correspond to the approximating functions for the
temperature within a finite element (Galerkin's technique) and requiring that the weighted
residual vanish yield a matrix equation for the nodal point temperatures

where

[H]{O} + {B} = 0

[H]c = L[N*nk][N*] dV+ L[NVpcp{uf[N*] dV

(39)

(40)

(41)

Matrix [k] contains the thermal conductivity and spatial derivatives of the approximating
functions, [N*), are defined so that

grad 0 = [N*] {Ok

The viscous dissipation is the product of the stress and rate of deformation

Q' = Tr(a"d')

(42)

(43)

and contributes to the total heat source, Q. For the convective losses over the surface, the
surface integral in eqn (41) contains the unknown nodal point temperatures. This term can
be appended to [H], however, leaving only known quantities in {B} (Dawson, 1984).

4.3. Integrating the evolution of the internal variable
Integration of the evolution equation for the internal variable can be accomplished in

a Eulerian frame with any of several different approaches. For example, a weighted
residual can be formed using the evolution equation and, with standard finite element
methodology, nodal point values of the internal variable can be determined that define the
distribution of the internal variable over the entire domain (Thompson et al., 1983). It is also
possible to integrate the evolution equation for individual particles along their respective
streamlines through the flow field. When this is done for a sufficient number of particles
within an element, the distribution of the internal variable over the element can be evaluated
by collocation. Because the streamlines are characteristic lines of the evolution equation,
the evolution equation may be integrated as a (nonlinear) ordinary differential equation.
Identifying the streamline position and integrating the evolution equation can be done for
as many points as are necessary, with each integration effectively being independent of the
others. In contrast, using a Galerkin approach a (nonlinear) partial differential equation is
solved for a distribution of the internal variable over the entire domain, as specified by the
approximating functions. Each approach has strengths and limitations, as discussed by
Agrawal and Dawson (1985). Jn this article the evolution of the internal variable is computed
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with a streamline technique. In other applications (three-dimensional bar rolling, for exam­
ple), the evolution equation for the internal variable has been solved with a GaJerkin
formulation (Dewhurst and Dawson, 1984).

The two basic components of the streamline integration method, when used in con­
junction with a finite element solution for the velocity field, arc:

(I) define the streamline position of a specific particle as it traverses the Eulerian domain;
(2) integrate the evolution equation, starting from a point with a known initial value

of the internal variable.

The upstream path that passes through a given point in the Eulerian region is located
by integrating the streamline velocity

dxs

Us =d!' (44)

This integration can be performed numerically to give coordinate pairs that define the
particle path as it moves through the domain. The evolution of the internal variable (for
Hart's model) then is

(45)

The time integral is transformed to a line integral along the streamline path using eqn (44)
and computed numerically using the same intervals that are used to define the streamline.
An Adams-Bashford-Moulton predictor-eorrector method performs the numerical inte­
gration, using predictor and corrector steps at each interval along the streamline. An
important computational aspect of using the streamline method is that, in evaluating the
internal variable within any given element, the streamline need only be tracked to an
upstream element where the internal variable has already been computed. By moving
through the mesh in the direction of flow, streamline integrations are usually necessary only
over the dimension of an element to define the internal variable distribution within that
element. Additional details of the streamline technique are available (Dawson, 1984).

5. SLAB ROLLING APPLICATION

The rolling of aluminum slabs was simulated with the model equations and numerical
algorithms presented in the preceding sections. This application was chosen for detailed
study because it is commerically important and there exists some experimental data relating
the rolling conditions to the mechanical properties of the resulting product (Hatch, 1984).
A variety of rolling conditions were imposed on a slab of 1100 aluminum to evaluate the
sensitivity of the predicted hardening behavior and temperature rises to changes in the
rolling conditions.

In the rolling simulations, a slab was compressed between two rigid rolls to reduce its
thickness (Fig. 2). The rolls had an outside radius of 10 cm and rotated at a constant
angular velocity of 10 rad S-I, making the tangential velocity of the roll surface I m S-I.

Combinations of three thickness reductions and three upstream temperatures were
simulated. The thickness reductions were 10,30, and 50%, such that slabs that were initially
4.0 cm thick were reduced to 3.6, 2.8, and 2.0 cm, respectively. The upstream temperatures
were 0.5, 0.6, and 0.7(}m, or 466, 560 and 673 K, respectively. In addition to these nine cases
in which sticking conditions between the roll and slab were assumed, three additional cases
of sliding friction were simulated, all at 30% reduction and 0.6(}m upstream temperature.
The frictional coefficient, p, was varied over a wide range such that the interface conditions
changed from nearly sticking to having a slab tangential velocity at the surface always less
than the roll velocity. In all of the simulations, convective heat losses were included from
the free surfaces and the heat loss to the rolls was modeled as convection with a very large
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Fig. 3. Finite element mesh for rolling simulations.

film coefficient. The free surface positions were adjusted to ensure that they were streamlines
of the velocity field using the spline technique discussed by Dawson (1984).

The simulations were performed using a finite element mesh having 396 isoparametric
triangular elements (quadratic velocity and temperature interpolations) with 871 nodal
points for the velocity and the temperature and 633 nodal points for the pressure (Fig. 3).
The streamline integrations were performed using a spatial step size along a streamline of
0.1 mm. With this step size approximately 30 steps were needed to traverse the small
elements inside the bite and approximately 150 steps were required to traverse the larger
elements near the slab ends. Convergence criteria were set on the velocity, temperature,
stress, internal variable, and rate of deformation changes between iterations of 0.1 %.
Convergence normally required 10-15 iterations with execution times on the University of
Minnesota CRAY-IS of approximately 4-5 CPU minutes.

In the cases of sticking friction between the slab and the roll, the velocity field is largely
determined by the kinematics imposed by the amount of reduction and the roll velocity. The
distributions of the effective rates of deformation are shown in Fig. 4 for the intermediate
temperature cases (00 = 0.60m).t The peak rates of deformation increase with greater
reductions and are largest near the first point of contact with the roll. The largest values
encountered are approximately 120 S-I in the 50% reduction case. For lighter reductions
of 10 and 30%, the peak rates ofdeformation are approximately 30 and 60 s- I, respectively.
These values scale approximately with the roll speed. Along the centerline of the slab the

t Contour plots of the rate of deformation and the hardness (which are computed and stored at interior
points of each element) were generated after computing nodal point values with a Galerkin method. A filter was
applied to these nodal point values to remove some oscillations introduced by the Galerkin procedure.
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Fig. 4. Rate of deformation (dill contours for various reductions.

rates of deformation are considerably smaller than the surface values, only reaching 20 s- I

in the 30% reduction example.
The temperature contours for the three cases at eo = 0.6em and sticking friction are

presented in Fig. 5. Larger temperature rises are expected with greater reduction, as is
evident from the figure. The higher rates of deformation near the slab surface contribute
to the high heating rate and high temperatures observed there. Also the chilling effect of the
rolls can be observed from the isotherms that are approximately parallel to the roll surface,
indicating an overall heat flux in the direction of the roll.

The hardness (internal variable) evolves most quickly in the regions of high rate of
deformation. This is shown in Fig. 6 where the hardness is plotted for three material
particles as a function of the position along the slab. Near the surface the hardness climbs
very rapidly as a particle passes through the zone of greatest rates of deformation. The
hardness remains relatively constant while the particle is close to the roll and the rates of
deformation are constrained by the sticking friction condition. The hardness further
increases when the particle passes through the region at the end of the slab/roll contact
where material also is deforming rapidly. Near the centerline the rates of deformation are
lower and change more gradually. The hardness increases smoothly along this path, but
reaches a smaller value than is computed for particles near the surface. This implies a
hardness gradient from the core to the surface of the slab.

The distribution of hardness of the deforming slab is shown for the various reductions
(at eo = 0.69m) in Fig. 7. It is clear that larger reductions induce greater hardening, as would
be expected. The effect of changing the upstream temperature at fixed reduction is shown
in Fig. 8. Lower temperatures induce greater hardening since the evolution of the hardness
depends on the stress which, in turn, changes with temperature. The larger amounts of
hardening near the surface are evident in both Figs 7 and 8.

The results of the above simulations and other sticking friction cases have been
summarized in Figs 9 and 10. In Fig. 9(a), the surface hardness (normalized by the
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initial hardness) has been plotted as a function of the reduction for the three upstream
temperatures. The hardness increases with higher temperature or larger reduction, as stated
earlier. The relative changes in hardness are significant. In the most severe case of a 50%
reduction and an upstream temperature of O.SOm, the hardness increases by a factor of 2.70.
At temperatures above O.SOm, it is likely that recovery in the hot slab reduces the levels of
hardness induced by rolling. This does not imply, however, that hardening during the rolling
need not be included in the forming model. Even though the effects of hardening may later
be removed partially by recovery, the stresses during rolling are higher as a result of
hardening.
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The computed changes in hardness for the lowest temperature simulations are com­
pared to measured yield strength data (Hatch, 1984) for cold rolled 1100 aluminum plate in
Fig. 9(b). Here, both the yield strength and hardness values have been normalized by the
0% reduction yield strength value ('" 32 MPa) reported by Hatch (1984). The surface
hardness values are greater than the yield strengths, but both increase with reduction at very
similar rates between the range of reductions (10-50%) analyzed. The centerline hardness
values are less than the corresponding computed surface values and compare closely to
the measured yield strengths. It should be noted that simulations performed at lower
temperatures than reported here do not predict appreciably larger hardness increases. The
increase in hardness diminishes as the initial temperature decreases. For example, an
additional 30% reduction simulation performed at (Jo = 373 K (O.4(Jm) resulted in a surface
hardness which was only about 10% larger than the (Jo = 466 K (0.5(Jm) surface hardness.
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Fig. 11. Hardness (u*) vs distance from the centerplane (y) for various friction coefficients p.

This is because the ratio u*/u(r approaches unity as temperatures diminish. It is clear from
Fig. 9(b) that the relative changes in the hardness are a good indication of the changes in
yield strength that would be expected due to the rolling process.

The computed temperature rises are shown in Fig. 10 as a function of the reduction
for various upstream temperatures. Larger reductions at lower temperatures cause greater
temperature rises, as would be expected. The significance of the calculations is that at lower
temperatures an isothermal assumption would be poor for large reductions because the
induced temperature changes could substantially change the flow properties. In applications
having light reductions, such as the 10% case, the temperature changes are modest and
have little impact on the properties. The overall temperature rises are comparable to those
reported for a purely viscoplastic (hyperbolic) constitutive model (Dawson, 1984). A linear
interpolation between 0.68m and 0.78m at 50% reduction in Fig. 10 to estimate the tem­
perature rise for 0.640m (600 K), as was used in Dawson (1984), gives a temperature rise of
approximately 38 K, compared to 36 K computed for the viscoplastic model. This small
difference cannot be attributed solely to differences in the form of the constitutive models,
however, since the same data were not used to evaluate the parameter values and the finite
element meshes were not identical (much finer resolution was used here).

Differences in the assumed frictional conditions between the rolls and the slab were
also examined. Besides sticking friction discussed in the previous cases, three sliding friction
conditions were considered. In one a very large value of the friction coefficient, P, was
chosen (1012 Pa s m- I) so that a condition very near sticking friction was achieved. The
other two had lower friction coefficients (10 10 and 108 Pa s m- I) such that, in the case of
the lowest coefficient, the slab never reaches the roll surface velocity. To illustrate the
differences between the various cases the hardness and temperature throughout the product
slab have been plotted (Figs II and 12). The temperatures near the surface are somewhat
higher for sliding friction with P= 1010 Pa s m - I than for the case of sticking friction.
However, when P= 108 Pa s m -I (the lowest value considered) the temperatures are below
any of the other cases and are more uniform through the thickness. The initial temperature
was 560 K in every case, so the differences in temperature between the various cases are
generally smaller than the average temperature rise (approximately 15 K). The hardness
changes show similar trends to the temperature. Sliding friction causes the hardness to be
somewhat larger than for sticking friction, except in the lowest friction coefficient case in
which the hardnesses are smaller and more uniform through the slab.

6. SUMMARY

The steady-state rolling of aluminum slabs has been studied with a forming model that
includes constitutive equations for the rate-dependent plastic flow ofaluminum. Simulations

SAS 23: 7-J
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were perfonned over a broad range of rolling conditions, spanning reductions from 10 to
50% and initial temperatures from 0.5 to 0.7 of the melt temperature. Hardening behavior
was represented with the internal variable model developed by Hart. Parameters for this
constitutive model were evaluated by fitting thc model to constant ratc of deformation
data reported by Hockett. The forming model equations were solved numerically by a
combination of finite element and predictor-corrector integration methods.

The simulations demonstrate that the internal variable representation for the plastic
flow can be used to compute how the mechanical properties, as quantified by the internal
variable, vary with the imposed rolling conditions. In these simulations the increases in
hardness and the temperature rises were both larger for greater reduction or lower initial
temperature. Changing the slab/roll interface friction condition altered the slab response,
increasing the hardness for small degrees of sliding and reducing it for larger amounts of
sliding. Comparisons of the relative changes in hardness with measured yield strengths for
rolled products show the model is capturing the essence of the hardening behavior during
rolling.
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